Perfect isometries between blocks of complex reflection groups
نویسندگان
چکیده
منابع مشابه
Major Indices and Perfect Bases for Complex Reflection Groups
It is shown that, under mild conditions, a complex reflection group G(r, p, n) may be decomposed into a set-wise direct product of cyclic subgroups. This property is then used to extend the notion of major index and a corresponding Hilbert series identity to these and other closely related groups.
متن کاملOn Perfect Isometries and Isotypies in Alternating Groups
Perfect isometries and isotypies are constructed for alternating groups between blocks with abelian defect groups and the Brauer correspondents of these blocks. These perfect isometries and isotypies satisfy additional compatibility conditions which imply that an extended Broué conjecture holds for the principal block of an almost simple group with an abelian Sylow psubgroup and a generalized F...
متن کاملA note on perfect isometries between finite general linear and unitary groups at unitary primes
Let q be a power of a prime, l a prime not dividing q, d a positive integer coprime to both l and the multiplicative order of q mod l and n a positive integer. A. Watanabe proved that there is a perfect isometry between the principal l−blocks of GLn(q) and GLn(q ) where the correspondence of characters is give by Shintani descent. In the same paper Watanabe also prove that if l and q are odd an...
متن کاملAutomorphisms of complex reflection groups
I. MARIN AND J. MICHEL Abstract. Let G ⊂ GL(Cr) be an irreducible finite complex reflection group. We show that (apart from the exception G = S6) any automorphism of G is the product of an automorphism induced by tensoring by a linear character, of an automorphism induced by an element of NGL(Cr)(G) and of what we call a “Galois” automorphism: we show that Gal(K/Q), where K is the field of defi...
متن کاملSurjective Real-Linear Uniform Isometries Between Complex Function Algebras
In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$, where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2020
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.04.031